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Abstract. A hierarchy of finite-dimensional integrable Hamiltonian systems can be obtained 
in a straightforward way by restricting a hierarchy of integrable evolution equations to the 
invariant subspace of their recursion operator. The independent integrals of motion and 
Hamiltonian functions for these Hamiltonian systems can be constructed by using the 
recursion formula and can be shown to be in involution. So these Hamiltonian systems 
are completely integrable in the sense of Liouville and commute with each other. 

It is well known that many finite-dimensional integrable Hamiltonian systems can be 
obtained by restricting infinite-dimensional integrable Hamiltonian systems to finite- 
dimensional invariant submanifolds of their phase space (see, for example, [ 1-61). 
We have proposed in [7] a straightforward way to obtain a hierarchy of finite- 
dimensional integrable systems by restricting the hierarchy of the integrable evolution 
equations to an invariant subspace of their recursion operator. In this letter, based on 
our work in [7], we present a method to obtain independent integrals of motion for 
these systems by using the recursion formula and show them to be in involution. Thus 
all of these systems are completely integrable Hamiltonian systems in the sense of 
Liouville [8] and commute with each other. 

To illustrate the method, consider the classical Boussinesq hierarchy [9] 

UI,, = L " U ,  = (2;) 
U = (;) 

with 

Here no boundary condition for U is required and the integration constant for D-I is 
defined to be zero. The Lax pair associated with (1) reads 

$xx = M* M = - J 2  + s -at-*+ Jr (2) 
$ f,, =--B'"' ; x (3) 

where 
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We now consider the following system instead of ( 2 ) :  

where & # 5, when k # 1. We call 
+ixx = Mj+j M j = - l f + s - $ r 2 + l j r  j = l ,  . . . ,  N 

q = ( q l ,  * * .  9 q N ) T  ($1  9 * 7 $!VIT 

P = ( P I , . . . , P N ) T ~ ( $ l x , . .  - 3  $ N x ) ~  

B = diag(l,, . . . , l N ) .  
It was pointed out in [7] that in order to obtain an invariant subspace of L, one 

has to impose a constraint on potential u as follows: 

where (.,.) is the inner product on R N .  Under the constraint condition (6), system ( 5 )  
can be written in canonical Hamiltonian form 

r = (q ,  9 )  a = (Bq, 4 )  -t<s, d2  (6) 

with Hamiltonian function Ho defined by 

By using the recursion operator L, it is shown in [7] that 
Ho=t(P,P)+f(B2q, q>-4(s, 4)(Bq, 4 )+&(4 ,  d3.  

RklA= hl(Bk-'q, q)+zhk+l (8) 
k 

/=0 

where the subscript A means to insert (6) into the expression, and h, are the integrals 
of the motion for (7). The recursion formula for Rk can be found as 

where R-l  = 2, Ro = r. Substituting (8) into both sides of (9), a lengthy calculation gives 
k - l  k - j - I  1 k - l  

hk+2= hjh/Ck+~-j-l-- hjhk+2-j k = 1,2, . . . (10)  
j = O  1=0 2 j = l  

where h,  = h2 = Cl = C2 = 0,  ha= CO = 1 ,  

+a(% d 2 ( B k q ,  4) -%4,  4)(Bk+lq, 9 )  
-w, 4)(Bkq, 4 ) )  k = 0,1,  . . . . 

It is clear from (10)  that the c k  are also integrals of motion for (7). Indeed it is 
easy to check by a direct calculation that if (p, q) is a solution of (7), then 

Define 
k 

It is not difficult to show that the Gk are in involution with respect to the ordinary 
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Poisson bracket. Then, using the identity 

/ + k + j  I + j - l  

P, p)(B"q, 4 )  - c (Br+k+j-m P, p)(B"q, 4 )  = c (Br+k+j-m 
m = I + l  m=O 

j = 1,2,. . . 
we can show by a straightforward calculation that the c k  are in involution. Since the 
Vandermonde determinant of l1 , .  . . , lN is not zero, it is easy to see that 
grad C3, .  . . , grad c N + 2  are independent. So we have the following. 

Proposition 1. The Hamiltonian system (7) is completely integrable in the sense of 
Liouville. 

The formula (10)  can be rewritten as 
1 

hk=Ck+ 1 h/hmCn-t2 h,Cm-- hrh, k = 1,2, . . . (12) 
/+m+n=k  I+m=k 2 / + m = k  

where I ,  m, n 3 1 ,  h ,  = h2 = CI = C2 = 0. We find from (12) by induction that 
k 

hk = 2 a/ c,, . . . c,, k = 1,2, .  . 
/ = I  mi+ ...+ m,=k 

3 where a,  = 1 ,  a,=?, 
I-2 

a, = aial-l-i  +2aI-,  -1 3 aiar-, 1 = 2,3, .  . . . 
i = l  2 i = l  

We now consider systems stemming from ( 3 )  

$. I f , ,  = -4B:.,"'$j + B!"'$. I J X  B;") = B(")I C = L  j =  1,. . . , N. (14)  
Under the constraint condition (6) and (7),  (14) becomes by using (8) and (13) 
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with 
n 

Hn = -2 c C m ,  . * e m r + ,  (ao= 1 ) .  
i=o  i +  1 mi+ ...+ m , + , = n + 3  

Equation ( 1 5 )  and ( 1  1 )  means that under the constraint condition (6) and (7) ,  (14) 
becomes a Hamiltonian system 

n = 1,2, . . . . aHn a Hn 
Pr =-- 

" aq 
qr,, = - aP 

Proposition 2. The Hamiltonian systems (16) ( n  = 0, 1, . . . , Ho = -2C3, call to = x) are 
completely integrable in the sense of Liouville and commute with each other. If ( p ,  q )  
satisfies (7) and (16) then U given by (6) solves the evolution equation (1). 

Prooj Notice that 

The C3, .  . . , C,,, are also the N independent integrals of motion in involution for 
(16). Thus (16) ( n  = 0, 1 ,  . . .) are completely integrable Hamiltonian systems and 
commute with each other. Since ( 1 )  is deduced from the compatibility condition of 
( 5 )  and (14), (7)  and (16) are obtained by substituting (6) into ( 5 )  and (14), respectively, 
it follows that if ( p ,  q )  satisfies (7)  and (16) then U given by (6) solves ( 1 ) .  

The approach proposed above is general. It can be used to other infinite- 
dimensional Hamiltonian systems. For example, for the AKNS hierarchy [ 101 

where 

L = - (  1 D-2rD-Iq 
2i -2qD-'q -D+2qD- ' r  

the associated eigenvalue problem is 

and the time evolution equation of t,b is 

where 
n n n 

A , =  1 akfn-k Bn = c b k l n - k  C k l n - k  
k =O k = l  k = l  (e) = L k - ' u  a,= - I  Uk = D-'( q C k  - rbk) k =  1 , 2 , .  . .  , n. 
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Now consider the system 

4. J X  = M.4. J J M) = (-1” i;j) 
j =  1 , .  . . , N 

where Ck # L1 when k # 1. We call 

@I=(*il,...,*IN)T @2 = ($21 9 . . * , $2 N ) T  B = diag(iL,, . . . , i&). 

To obtain an invariant subspace of L, we get a constraint on U [7] 

r=(@2,@2) 4 = - ( @ I  7 0,). (21) 

Under the constraint condition (21), (20) can be written in canonical Hamiltonian form 

with H o = - ~ ( @ l , @ , ) ( @ 2 , @ 2 ) - ( B @ l , @ ~ ) .  
It was shown in [7] by using recursion operator that 

k - 1  

1=0 
C k ( A =  hl(Bk-’-‘@,, @ 2 ) ( - i ) k - 1 - 1  

ho= 1 
k - I  

1=0 
b k l A =  - hl(Bk-l- l@l,@l)(- i )k- l - ’  

where ht are the integrals of motion for (22). Using (23) and the recursion formula 
for U k ,  bk and Ck 

a straightforward computation yields 

where 

F1 = -i(OI,  Q2) 

- (B’@l ,  @2)(Bk-2-’@1, @,)I k =  1 , 2 , .  . . 
Thus the Fk are integrals of motion for system (22). In a similar way, we can show 
that the Fk are in involution with respect to the ordinary Poisson bracket and that 
grad Fl , . . . , grad F N  are independent. This implies that the Hamiltonian system (22) 
is completely integrable. Similarly, we get 

k 
h k =  61 F,, . . . F,, 

1 = 1  m l +  ...+ m , = k  

where m l s l ,  . . . ,  m 1 2 1 ,  d l = l ,  Liz=;, 
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For the system obtained from (19) 

+. J l n  = N!"'JI. J J A';") = N'n'I,=c, J = 1 , 2, . . . , N. (26) 

It can be shown in the same way that under the constraint conditions (21) and 
(22), (26) can be written in canonical Hamiltonian form 

where 

61 
H n = C - -  c F m ,  Fm,* ,  (a,= 1) n = 1,2,  . . . . 

/ = o  I +  1 m 1 + . . . + m l + , = n + l  

Finally we have the following. 

Proposition 3. The systems (27) ( n  = 0, 1 ,  . . . , call lo = x) are completely integrable and 
commute with each other. If and Q2 satisfy both (22) and (27) (n = 1 , 2 , .  . .), then 
U given by (21) solves (17). 

This work was supported by the National Natural Science Foundation of China. 
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